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Abstract

In this work we address the problem to determine the information degree of a
statistical experiment, planned in a Bayesian design framework, to calibrate
the parameters of a chosen statistical model or to predict some quantity of
interest.
Along the lines of our previous work (Long, 2013) we develop a fast approach
based on the Laplace approximation to estimate the expected information
gain (expected Kullback–Leibler divergence) for model parameter inferences
or the prediction of quantities of interest, in the case of underdetermined
statistical models.
We demonstrate the accuracy, efficiency and robustness of the proposed
method via some numerical examples, such as the design of a scalar pa-
rameter in a model expressed through a one dimensional cubic polynomial
function with two indistinguishable parameters. Our method clearly outper-
forms the estimation techniques that rely solely on Monte Carlo methods
for multidimensional integration.

Keywords: Bayesian experimental design, information gain, Laplace ap-
proximation, Monte Carlo sampling, uncertainty quantification.

1 Introduction

In Bayesian experimental design the information of a proposed experiment
is usually measured by the expected information gain, i.e., the expected log
ratio between the posterior and prior distribution for the parameters in the

1



statistical model (see, for instance, Lindley, 1956, Chaloner, 1995, Ginebra,
2007). The computation of the expected information gain is commonly ana-
lytically intractable and computationally very expensive, particularly when
the outcomes of the experiment are modeled as functions of the solution of
Partial Differential Equations (PDEs). Using the Laplace approximation we
proposed in (Long, 2013) a fast approach for the estimation of the expected
information gain and we analyzed the rates of different dominant error terms
with respect to the amount of data in each experiment scenario, provided
that the parameters can be determined completely through the experiments.
When both the determinant of the posterior covariance matrix and the prior
probability density functions (pdf) satisfy certain regularity conditions with
respect to the random parameters, we demonstrated, by means of several
nonlinear examples, also involving the solution of PDEs, that sparse quadra-
ture techniques can be employed to carry out the integration steps with high
efficiency.
In this work, we extend the methodology developed in (Long, 2013) to the
cases where the random parameters are not determined completely through
the experiments, i.e., models with underdetermined parameters. We as-
sume the existence of an embedded manifold on which the parameters are
not distinguishable by the data. In this context, the posterior pdf will start
to concentrate around this manifold as the amount of data increases. The
key innovation of our novel extension consists in performing the normality
approximation for the conditional posterior pdf given a fixed point on the
manifold, and in the use of Laplace approximation for the evaluation of the
conditional expected information gain. Both approximations are carried out
along the directions which are orthogonal to the indistinguishable manifold.
Asymptotic expansions of the expected Kullback–Leibler divergence between
the posterior and prior pdfs for determined models have been derived by sev-
eral authors using the likelihood ratio process. See, for instance, (Clarke,
1991) for an interesting connection with an information–theoretic framework
of the Bayesian Central Limit Theorem, (Polson, 1992) for an extension to
non i.i.d. regular models for experimental designs, and (Ghosal, 1997) for
the analysis of non–regular models when the posterior distribution is consis-
tent. Other works were inspired by (Bernardo, 1979), whose motivation was
to justify the use of certain prior distributions in Bayesian statistical analysis
by maximizing the Shannon mutual information between the parameter vec-
tor and the data, also in the presence of nuisance parameters in the model.
These works, see for example (Polson, 1988, Clarke, 1993 y 2004), making an
explicit distinction between parameters of interest and nuisance parameters
in the model, can be used, in principle, to obtain asymptotic expressions of
the expected information gain for underdetermined models. However, their
applicability is confined to the case where the indistinguishable manifold can
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be explicitly parametrized in terms of the nuisance parameters. Instead, our
approach does not require such an explicit representation of the underlying
manifold where the posterior distribution concentrates. On the other hand,
an explicit representation of the manifold is practically not possible. In Sec-
tion 2, we formulate our new methodology for parameter inference: we first
introduce the information gain and the expected information gain. We then
reparametrize the prior and posterior pdfs, using two set of local parame-
ters, t and s, separately. The t direction parametrizes the indistinguishable
manifold, while s parametrizes the directions orthogonal to the manifold.
Next, the Laplace approximation is carried out along the s direction, con-
ditioned on a fixed t value. Finally, the information gain is expressed as an
integral along the t direction. By an extra integral over the data, we obtain
the asymptotic formulation of the expected information gain. Section 3 ap-
plies similar ideas to the prediction of quantities of interest. In the Section
4 we describe briefly the numerical methods used to approximate the inte-
grals that appear in the asymptotic expressions of the expected information
gain and the expected conditional entropy. Some numerical examples are
presented in Section 5, including the designs of a scalar parameter in a one
dimensional function with two indistinguishable parameters.

2 Estimation of the expected information gain for
an underdetermined model

In this section we describe our new methodology for parameter inference.

2.1 The general model, information gain and expected in-
formation gain

To introduce the main ideas, we consider the following model of both mul-
tidimensional parameters and multidimensional outputs. For simplicity of
exposition only, let us assume additive Gaussian measurement noise,

yi = g(θ0, ξ) + εi ,

where g(θ0, ξ) is the mean vector of yi, which is a known deterministic
model in our case, θ0 is the d dimensional vector of “true” parameters
used to generate the synthetic data, ξ is the vector of design parameters,
also known as the experimental set–up, yi is the ith observation vector,
and εi is assumed to be additive independent and identically distributed
(i.i.d.) Gaussian noise, εi ∼ N (0,Σε), corresponding to the ith observation.
Assume now that we are able to collect M observations using the same
experimental set–up and that ȳ = {y}Mi=1 is a set of observed data points.
Essentially, the observations ȳ are i.i.d., given specific values of θ0 and ξ.
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The Kullback–Leibler (K–L) divergence (information gain) and expected
K–L divergence (expected information gain) for a given experiment ξ are
defined as follows:

DKL(ȳ) =

∫
Θ

log

(
pΘ(θ|ȳ)

pΘ(θ)

)
pΘ(θ|ȳ)dθ ,

I =

∫
Y

∫
Θ

log

(
pΘ(θ|ȳ)

pΘ(θ)

)
pΘ(θ)p(ȳ)dθdȳ ,

where pΘ(θ) is the prior pdf of the unknown random parameter θ, pΘ(θ|ȳ)
is the posterior pdf of the unknown random parameter θ, and p(ȳ) is the
so–called Bayesian evidence, defined as the marginal likelihood over the
parameter, p(ȳ) =

∫
Θ p(ȳ|θ)p(θ)dθ .

2.2 The manifold of indistinguishable parameters

For an underdetermined model, given θ0, we define the manifold

Definition 1.

T (θ0) := {θ ∈ Rd : g(θ)− g(θ0) = 0} ,(1)

where d is the dimension of the parameter vector θ0, and a subdomain that
contains T (θ0):

Definition 2.

ΩM (θ0) := {x ∈ Rd : dist(x, T (θ0)) ≤ O(M−α)} .

O(·) denotes the usual big O notation. Intuitively, as we obtain more data,
the posterior pdf of θ concentrates at the vicinity of T (θ0), in such a way
that the integration of the information gain can be approximated using
firstly the Laplace approximations along the directions orthogonal to T (θ0)
and secondly an integration over the manifold T (θ0). Thus, we define a
subdomain ΩM (θ0) ⊂ Rd by extending T (θ0) along its normal directions,
and assume that the length of the extension shrinks to zero at a slower rate
than the concentration of the posterior pdf p(θ|ȳ). Therefore, the volume of
ΩM (θ0) shrinks to zero at a slower rate than the square root of the number
of replicate experiments M , i.e., α ∈ (0, 0.5).

Lemma 1. Pr(θ ∈ Rd/ΩM (θ0)|ȳ) = OP

(
M (α− 1

2
)p
)

when M →∞

We leave the proof of this lemma to Section 2.5 after introducing the new
local parameters. p denotes the highest order of the available statistical
moment of p(θ|ȳ). Note that α < 0.5 is necessary to ensure a decreasing
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probability mass outside ΩM (θ0). For example, if p = 2 and α = 0, we have

OP

(
M (α− 1

2
)p
)

= OP
(
M−1

)
; if p = 4 and α = 0, we have OP

(
M (α− 1

2
)p
)

=

OP
(
M−2

)
. From now on, we assume that OP

(
M (α− 1

2
)p
)

is smaller than

OP
(
M−1

)
.

The K–L divergence can then be written as the sum of two terms, namely

DKL(ȳ) =

∫
ΩM (θ0)

log

(
pΘ(θ|ȳ)

pΘ(θ)

)
pΘ(θ|ȳ)dθ + εΩM(2)

with

εΩM =

∫
Θ−ΩM (θ0)

log

(
pΘ(θ|ȳ)

pΘ(θ)

)
pΘ(θ|ȳ)dθ = OP

(
M (α− 1

2
)p
)
, when M →∞ .

The rate of εΩM is a direct consequence of Lemma 1.

2.3 Local coordinates and weight functions

For the purpose of conciseness, we use T and ΩM instead of T (θ0) and
ΩM (θ0), respectively, in the remainder of this work. We define a new set of
parameters t and s for our estimation of DKL: t parameterizes the mani-
fold T and s parameterizes the direction orthogonal to T . Specifically, the
direction orthogonal to T is defined as the orthonormal complement of the
kernel of the Jacobian of our model g, i.e., Ker(Jg)

⊥. Observe that the
Ker(Jg) contains the directions tangent to the manifold at t given θ ∈ T .
We define the following diffeomorphism mapping:

Definition 3.

f : ΩMs,t → ΩM ,(3)

where ΩMs,t is the (s, t) space, which is asymptotically a rectangular, ignor-
ing possible boundary effects, i.e., ΩMs,t = [−O(M−α), O(M−α)]× Tt.

Here, [−O(M−α), O(M−α)] is the range of parameter s, and Tt is the set
containing all the values of the parameter t. Observe that all these objects
depend on θ0. For the purpose of conciseness, we do not write this depen-
dence explicitly, so instead of Tt(θ0) we write Tt in the remainder of this
work. Here, we let J be the Jacobian of this mapping with respect to (s, t).
Figure 1 illustrates such an indistinguishable manifold T , the orthogonal
direction S, and the subdomain ΩM .
Generally we are not able to give an explicit parameterization of the manifold
T . Nevertheless, we can give the explicit form of the local coordinate s as
follows. We first define a log likelihood cost function F given by

F (θ) :=
1

2
(g(θ)− g(θ0))TΣ−1

ε (g(θ)− g(θ0)) .
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Figure 1: An illustrative indistinguishable manifold in two dimensional pa-
rameter space.

We subsequently perform the eigenvalue decomposition of the Hessian of
F (θ) at f(0, t) on the manifold (by the construction we have that s = 0 on
the manifold T ) as follows:

H(f(0, t)) = [U V ] Λ [U V ]T ,(4)

where Λ is a diagonal matrix containing the eigenvalues ofH(f(0, t)), U is a
matrix whose columns are the basis corresponding to the positive eigenvalues
of H(f(0, t)), and V is a matrix whose columns are the basis corresponding
to the zero eigenvalues of H(f(0, t)) . Then, we can locally define s at the
vicinity of the point f(0, t) as follows

Definition 4.
s = UT (θ − f(0, t)) ,

which is a vector of length r = rank(H(f(0, t))).
Meanwhile, t is a vector of length d− r. In this work we assume that r does
not change value w.r.t. θ. Observe now that with this decomposition, we
can express ΩM equivalently as follows:

ΩM =
{
θ : θ ∈ Rd; θ = θt + θs; θt ∈ T ; θs = sU(θt); ||θs|| < O(M−α)

}
for some α ∈ (0, 0.5).
Keeping in mind that we intend to carry out the Laplace approximation in
s direction, expressing the related pdfs, e.g., p(θ) , p(θ|ȳ), in terms of local
coordinates s and t is necessary. We consequently define two weight func-
tions of (s, t) through a change of variables from the pdfs of θ:
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Definition 5.

p(s, t) := pΘ(f(s, t))|J | ,(5)

and

Definition 6.

p(s, t|ȳ) := pΘ(f(s, t)|ȳ)|J | .(6)

Here, p(s, t) and p(s, t|{yi}) are the prior and posterior weight functions of
(s, t), respectively. Observe that (5) and (6) are like a standard change of
variables. However, the integrations of both weight functions over ΩMs,t do
not equal to 1. i.e., P(θ ∈ Ωm) < 1 and P(θ ∈ Ωm|ȳ) < 1 for an M of finite
size. Also note that both p(s, t) and p(s, t|ȳ) depend on θ0. Nevertheless,
we note that p(s, t|ȳ) is asymptotically a pdf, since the posterior pdf p(θ|ȳ)
concentrates in ΩM . In addition, since

pΘ(θ|ȳ) =
p(ȳ|θ)p(θ)

p(ȳ)
for θ ∈ ΩM ,

we have

p(s, t|ȳ) =
p(ȳ|s, t)p(s, t)

p(ȳ)
for (s, t) ∈ ΩMs,t .(7)

We use these asymptotic relations in the following derivations.
Substituting (5) and (6) into (2), we obtain

DKL(ȳ) =

∫
Tt

∫
[−O(M−α),O(M−α)]

log

(
p(s, t|ȳ)

p(s, t)

)
p(s, t|ȳ)dsdt+ εΩM

=

∫
Tt

∫
[−O(M−α),O(M−α)]

log

(
p(s, t|ȳ)

p(s, t)

)
p(s|t, ȳ)p(t|ȳ)dsdt+ εΩM .(8)

2.4 Laplace approximation for the conditional information
gain

For a given t, the posterior pdfs are expected to concentrate at ŝ (note that ŝ
is the maximum likelihood estimator of the “true” parameter) as the number
of observations M increases. We approximate p(s, t|ȳ), p(s|t, ȳ) and p(s, t)
by taking the exponential of the second order Taylor series expansion of
their corresponding logarithms at ŝ, for a given value of t, namely by the
following Gaussian posterior pdfs and the local expansion of p(s, t) at ŝ
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p̃(s|t, ȳ) =
1

(
√

2π)r|Σs|t|1/2
exp

[
−

(s− ŝ)TΣ−1
s|t (s− ŝ)

2

]
,

(9)

p̃(s, t|ȳ) = p(ŝ, t|ȳ) exp

[
−

(s− ŝ)TΣ−1
s|t (s− ŝ)

2

]
,

(10)

p̃(s, t) = p(ŝ, t) exp

[
∇ log p(ŝ, t)(s− ŝ) +

(s− ŝ)THp(ŝ, t)(s− ŝ)
2

]
.(11)

where Hp(ŝ, t) is the Hessian of hp(ŝ, t), hp(s , t) is the logarithm of prior
weight function. i.e., log [p(s, t)]. In order to compute Σs|t, we carry out the

second order Taylor expansion of F̃ = − log(p(θ|ȳ)) at f(ŝ, t) as follows:

F̃ (f(ŝ, t) +Us) = F̃ (f(ŝ, t)) +
(s− ŝ)TUT H̃(f(ŝ, t))U(s− ŝ)

2
+O(||s− ŝ||3) .

Therefore, we obtain the conditional covariance matrix after the change of
variables

Σs|t = (UT (H̃(f(ŝ, t))U)−1 .(12)

Now we have the following lemma regarding to the approximation of K-L
divergence:

Lemma 2. The information gain DKL can be approximated by

DKL =

∫
Tt

∫
[−O(M−α),O(M−α)]

log

(
p̃(s, t|ȳ)

p̃(s, t)

)
p̃(s|t, ȳ)dsp(t|ȳ)dt+ εlaplace + εΩM ,

(13)

where εlaplace = OP ( 1
M2 ) (its proof is given in Appendix A), εΩM = OP

(
M (α− 1

2
)p
)

,

we assume it is smaller than OP ( 1
M2 ).

2.5 Laplace approximation for the expected information gain

We first introduce the following definition
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Definition 7.

Ds|t = h(ŝ, t)− hp(ŝ, t)−
r

2
.(14)

where h(s , t) denotes the logarithm of the posterior weight function. i.e.,
log [p(s, t|{yi})] . Note that

∫
[−O(M−α),O(M−α)]

log

(
p̃(s, t|ȳ)

p̃(s, t)

)
p̃(s|t, ȳ)ds = Ds|t +OP

(
1

M

)
,(15)

where the error term OP ( 1
M ) is dominated by

tr(Σs|tHp(ŝ,t))

2 .
tr(A) denotes the trace of the matrix A.
The asymptotic form of the expected information gain is given below:

I =

∫
Y
DKL p(ȳ)dȳ

=

∫
Y

∫
ΩMs,t

Ds|tp(s, t|ȳ)dsdtp(ȳ)dȳ +O

(
1

M

)
,

where we have assumed that the error term in (15) is integrable w.r.t. the
data ȳ. Furthermore, we carry out a change of parameters such that

I =

∫
Y

∫
ΩM

Ds|tp(θ0|ȳ)dθ0p(ȳ)dȳ +O

(
1

M

)
=

∫
Y

∫
Θ

1ΩMDs|tp(θ0|ȳ)dθ0p(ȳ)dȳ +O

(
1

M

)
=

∫
Θ

∫
Y

1ΩMDs|tp(ȳ|θ0)dȳp(θ0)dθ0 +O

(
1

M

)
,(16)

where the t in Ds|t is implicitly given by θ0.

Next, we rewrite the first two terms in Ds|t using (7):

log [p(ŝ, t|ȳ)]− log [p(ŝ, t)] = log [p(ȳ|ŝ, t)]− log [p(ȳ)]

= log [p(ȳ|ŝ, t)]− log

[∫
Tt

∫
[−O(M−α),O(M−α)]

p(ȳ|s, t)p(s, t)dsdt

]
+OP

(
M (α− 1

2
)p
)
.

(17)

Furthermore, the Laplace approximation for the above inner integration of
s and the independence between t and ȳ given s (note that the tangent
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hyperplane to the manifold T is the kernel of the Jacobian of the model,
i.e., Ker(Jg)) lead to

− log

[∫
Tt

∫
[−O(M−α),O(M−α)]

p(ȳ|s, t)p(s, t)dsdt

]

= − log

[∫
Tt

p(ȳ|ŝ, t)p(ŝ, t)(
√

2π)r|Σs|t|1/2dt
]

+OP

(
1

M

)
= − log [p(ȳ|ŝ)]− log

[∫
Tt

p(ŝ, t)(
√

2π)r|Σs|t|1/2dt
]

+OP

(
1

M

)
.

Substituting this expression back into (17), we can write

log [p(ŝ, t|ȳ)]− log [p(ŝ, t)] = − log

[∫
Tt

p(ŝ, t)(
√

2π)r|Σs|t|1/2dt
]

+Op

(
1

M

)
where ps(ŝ) =

∫
T t
p(ŝ, t)dt , which depends on θ0. Replacing the new ex-

pression of Ds|t back into (16), we have the following theorem regarding the
approximation of the expected information gain.

Theorem 1. The expected information gain can be expressed as

I =

∫
Θ

∫
Y

1ΩM

[
− log

(∫
Tt

p(ŝ, t)|Σs|t|1/2dt
)
− r

2
log(2π)− r

2

]
p(ȳ|θ0)p(θ0)dȳdθ0

+O

(
1

M

)
.

(18)

We can furthermore approximate the maximum posterior solution of s for a
given value of t, i.e., ŝ, by 0. Theorem 1 can be simplified to the following
Theorem 2.

Theorem 2. The expected information gain can be approximated by

I =

∫
Θ
− log

(∫
Tt

p(0, t)|Σs|t|1/2dt
)
p(θ0)dθ0 −

r

2
log(2π)− r

2
+O

(
1

M

)
.

(19)

2.6 Simplification of the integration over the manifold Tt

In (19), there still exists a double integral, due to the manifold integral in
the logarithmic integrand. Specifically, the outer one is over the space of
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θ0, while the inner one is on the manifold Tt:
∫
Tt
p(0, t)|Σs|t|1/2dt. The

integrand of the outer integral is a non-trivial function of the inner integral.
Therefore, as a whole, this double–integral can not be viewed as a single
loop with higher dimension. We now make some further simplifications of
the manifold integral in (19). We first state the following lemma:

Lemma 3.∫
Tt

p(0, t)|Σs|t|1/2dt = |Σ̃s|t|1/2
∫
Tt

p(0, t)dt+O

(
1

M
3
2

)
,

where Σ̃s|t is an approximation of Σs|t which does not depend on t.

The proof of Lemma 3 is as follows. We know (Long, 2013) that the Hessian
of the negative log posterior can be expressed as

H̃ = Hg(f(0, t))TΣ−1
ε Es +MJg(f(0, t))TΣ−1

ε Jg(f(0, t))−Hp(f(0, t)) ,

(20)

where Jg is the Jacobian of model g w.r.t. the parameter θ, Hg is the
Hessian of model g w.r.t. the parameter θ, and Es denotes the sum of the
data residuals, i.e., Es =

∑M
i=1 ri .

Substituting (20) into (12) leads to

Σs|t =
{
UT

[
MJg(f(0, t))TΣ−1

ε Jg(f(0, t))
]
U
}−1

+O

(
1

M
3
2

)
=Σ̃s|t +O

(
1

M
3
2

)
.(21)

The order of the error term can be derived using the Woodbury matrix
identity (Hager,1989). Let us consider the following eigendecomposition of

UT
[
Hg(f(0, t))TΣ−1

ε Es −∇∇hp(f(0, t))
]
U = RCL ,

where R is the column eigenvector matrix, L is the row eigenvector matrix,
and C is the diagonal matrix containing eigenvalues. Let

A = UT
[
MJg(f(0, t))TΣ−1

ε Jg(f(0, t))
]
U .

Thus, the conditional covariance matrix Σs|t can be rewritten using Wood-
bury matrix identity as follows

Σs|t = (A+RCL)−1 = A−1 −A−1L(C−1 +RA−1L)−1RA−1 .(22)

Since the order of C is O(
√
M) and the order of A is O(M), the error term

A−1L(C−1 +RA−1L)−1RA−1 is O
(

1

M
3
2

)
.
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By construction, the model g is only a function of s, therefore, the simpli-
fication Σ̃s|t does not depend on t. Now we complete the proof of Lemma
3.
Let ps(0) =

∫
Tt
p(0, t)dt be the marginal of prior pdf of parameter s.

In addition, it is in general difficult to compute the marginal pdf ps(0). Try-
ing to introduce an error as small as possible, we first linearize the manifold
locally at θ∗(θ0) in the case of a single modal prior or at the modes of the
set {θ∗(θ0)}, which contains all the local optima in the case of a multimodal
prior:

θ∗(θ0) := arg max
θ∈T
{p(θ)} .

A linear transformation of variables of the prior leads to the approximated
marginal p̃s(0). Note that by linearizing the manifold at the maximum
point/points, we minimizes the O(1) error here. For instance, we can obtain
p̃s(0) easily for Gaussian or Gaussian mixture prior.
By carrying out both simplifications, we introduce an error of order O(1).
However, our numerical example shows that it is still a negligible error.
Thus, we have a further simplified estimation of the expected information
gain:

Theorem 3.

I =

∫
Θ

[
− log [p̃s(0)]− 1

2
log |Σ̃s|t| −

r

2
log(2π)− r

2

]
p(θ0)dθ0 +O (1) .

(23)

with Σ̃s|t in (21) and p̃s(0) computed by linearizing the manifold.

3 Estimation of the expected information gain for
a quantity of interest

In (Long, 2013) we considered the approximation of the posterior pdf of a
quantity of interest through a Gaussian distribution, in the case of a model
whose parameters can be completely determined by the data. We now focus
on the prediction of a physical quantity of interest for an underdetermined
model. The quantity of interest is commonly defined as a function of θ plus
some independent error, i.e.,

Q = τ(θ) + εQ ,

The prediction error εQ is assumed to be independent of θ. We can repa-
rameterize τ using (s, t) defined in Section 2.3. i.e.,

Q = τ( f(s, t)) + εQ = τ̂(s, t) + εQ for (s, t) ∈ ΩMs,t .
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Given t, a Taylor expansion of τ at (ŝ, t) along s leads to

τ̂(s, t) = τ̂(ŝ, t) + (∇sτ̂(ŝ, t))(s− ŝ) +OP (||s− ŝ||2) .

Since the conditional posterior pdf p(s|t, ȳ) can be approximated by a Gaus-
sian distribution concentrated around (ŝ, t) as discussed in the previous sec-
tion, we can apply a small noise approximation to propagate randomness
from s to the quantity of interest Q.
The resulting approximated distribution of Q, given t and ȳ, is also Gaus-
sian:

p(Q|t, ȳ) =
1√

2πσQ|t, ȳ
exp

[
−(Q− τ̂(ŝ, t))2

2σ2
Q|t, ȳ

]
+OP

(
1

M2

)
= p̂(Q|t, ȳ) +OP

(
1

M2

)
,

(24)

where

σ2
Q|t, ȳ = (∇sτ̂)TΣs|t∇sτ̂ + σ2

εQ
.

Here, σ2
εQ

denotes the variance of εQ, which is assumed to be a known
constant.
The approximated posterior pdf of Q is then

p(Q|{yi}) =

∫
Tt

p̂(Q|t, ȳ)p(t|ȳ)dt+OP

(
1

M2

)
= p̂(Q|{yi}) +OP

(
1

M2

)
.

(25)

We can furthermore write p(t|ȳ) as a marginal over s:

p(t|ȳ) =

∫
[−O(M−α),O(M−α)]

p(s, t|ȳ)ds+OP

(
M (α− 1

2
)p
)
.

Note that p(s, t|ȳ) should concentrate at s = ŝ in ΩM as the amount of data
increases, which leads to the following Laplace approximation of p(t|ȳ):

p(t|ȳ) = p(ŝ, t|ȳ)(
√

2π)r|Σs|t|1/2 +OP

(
1

M

)
= p̂(t|ȳ) +OP

(
1

M

)
.(26)

Substituting (26) back into (25), we obtain

p(Q|{yi}) =

∫
Tt

p̂(Q|t, ȳ)p(ŝ, t|ȳ)(
√

2π)r|Σs|t|1/2dt+OP

(
1

M

)
=p̂(Q|{yi}) +OP

(
1

M

)
.(27)
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Using the Bayes theorem we derive p̂(Q|{yi}) up to a scaling factor:

p̂(Q|{yi}) ∝
∫
Tt

p̂(Q|t, ȳ)(
√

2π)r|Σs|t|1/2p(ȳ|ŝ, t)p(ŝ, t)dt

∝
∫
Tt

p̂(Q|t, ȳ)|Σs|t|1/2p(ŝ, t)dt

=

∫
Tt

∫
[−O(M−α),O(M−α)]

1ŝp̂(Q|t, ȳ)|Σs|t|1/2p(s, t)dsdt ,(28)

where 1ŝ denotes an indicator function, which takes value 1 when s = ŝ,
otherwise, it takes value 0.
Since Q is a scalar, we can obtain the scaling factor for p̂(Q|{yi}) once (28)
is computed using a one dimensional grid of Q whose range is defined in
Section 4. We can next compute the expected conditional entropy by

H(Q|ȳ) =

∫
Θ

∫
Y

∫
Q

log [p̂(Q|ȳ)] p̂(Q|ȳ)dQp(ȳ|θ0)dȳp(θ0)dθ0 +O

(
1

M

)(29)

If we approximate ŝ using 0, we have the following approximated pdfs:

p̂(Q|t,θ0) =
1√

2πσQ|t,θ0
exp

[
−(Q− τ̂(0, t))2

2σ2
Q|t,θ0

]
= p̂(Q|t, ȳ) +OP

(
1√
M

)
,

with

σQ|t,θ0 = (∇sτ̂)TΣs|t(0)∇sτ̂ + σ2
εQ
.

and

p̂(Q| θ0) ∝
∫
Tt

∫
[−O(M−α),O(M−α)]

10p̂(Q|t, θ0)|Σs|t|1/2p(s, t)dsdt .(30)

Replacing p̂(Q|ȳ) in (29) by p̂(Q|θ0) and integrating out the OP

(
1√
M

)
term

using Y (this term has mean zero; see Appendix B for details), we obtain
the following asymptotic results for the expected conditional entropy:

H(Q|ȳ) =

∫
Θ

∫
Q

log [p̂(Q|θ0)] p̂(Q|θ0)dQp(θ0)dθ0 +O

(
1

M

)
,(31)

The rates of the dominant errors are derived in Appendix C. It is observed
that we have a double loop integral for the computation of H(Q|ȳ). We show
the details of the numerical computation in the next section. Eventually the
expected information gain for the quantity of interestQ can be approximated
by

I = H(Q)−H(Q|ȳ) ,

14



where H(Q) = −
∫
Q log [p(Q)] p(Q)dQ is the prior entropy of Q. Observe

that we do not need to compute H(Q) in order to select the best experi-
mental set–up, since H(Q) does not depend on the set–up parameter ξ. A
more detailed description about H(Q) and its computation can be found in
(Long, 2013). Thus, we will focus on the numerical computation of (31) in
Section 4.

4 Numerical integration of the asymptotic forms

In most practical scenarios, we need to compute numerically the expected
information gain (18) for parameter inferences and the expected conditional
entropy (29) for predictions of quantities of interest.
We can approximate the integral in (18) using numerical quadratures or
Monte Carlo sampling depending on the regularity of the integrand. In the
case of using quadratures, the numerical integration adopts the following
form:

IQ =

NQ∑
i=1

[
− log [ps(0)]− 1

2
log
(
|Σs|t|

)]
wi −

r

2
− r

2
log (2π) ,(32)

where NQ is the number of quadrature points, wi is the weight for the ith

quadrature points. ps(0) and Σs|t are computed using the ith quadrature
of the “true” parameter θ0i. We can adopt sparse quadrature abscissas and
weights for high dimensional parameter θ0 and a corresponding integrand
with certain regularity. A review of sparse grids can be found, for instance,
in (Barthelmann, 2000, Nobile, 2008, Long, 2013, Garcke, 2013). On the
other hand, if there is a lack of regularity in the marginal prior ps(0) or the
conditional covariance matrix Σs|t, we can use Monte Carlo sampling:

IMC =
1

NS

NS∑
j=1

[
− log [ps(0)]− 1

2
log
(
|Σs|t|

)]
− r

2
− r

2
log(2π) ,(33)

where NS denotes the number of samples. Both ps(0) and Σs|t are com-

puted using the jth random sample of the “true” parameter θ0j .
Due to the discontinuous indicator function in the integral of p̂(Q|θ0) (30),
we use Monte Carlo sampling for its numerical estimation. For the sake of
convenience, we also adopt Monte Carlo sampling for the numerical estima-
tion of the expected conditional entropy of the quantity of interest (31), such
that we can reuse the same set of samples in both integrals. Specifically, we
use the sample average w.r.t. the θ prior and one dimensional binning for

15



Q as follows

H(Q|ȳ)MC =
1

NS

NS∑
j=1

NS1∑
k=1

log
[
p̂(Qk|θ0j)

]
p̂(Qk|θ0j)∆k(34)

with

p̂(Qk|θ0j) ∝
1

NS

NS∑
l=1

1Ωp̂(Qk|tl, θ0j) ,(35)

where NS1 is the number of points in a one dimensional mesh partitioning
the domain of scalar Q, and ∆k is the length of the kth segment.
We define the domain of Q as [min τ(θ),max τ(θ)], where θ takes a value
from the NS samples. We use the same collection of samples for θ in both
(34) and (35). tl is the local coordinate corresponding to the lth sample of
θ. Ideally, this sample is supposed to be on the manifold T . In practice, we
approximately consider all the samples in Ω as ones on the manifold T . Ω,
which depends on θ0, is defined by

Ω(θ0) = {θ ∈ Rd : ||g(θ)− g(θ0)|| ≤ C} .(36)

where C is a small constant. We used 10−3 in our computations.

5 Numerical Examples

5.1 Model with two indistinguishable parameters

We apply our projective Laplace method to the second example in (Long,
2013). The measurement y reads

y = (αθ1 + βθ2)3ξ2 + (αθ1 + βθ2) exp[−|0.2− ξ|] + ε .

It is a single output experiment with a model of two parameters. The model
is not sensitive to a change in the parameters along the direction of (β, −α),
where α and β are two given constants. The measurement noise is assumed
to be Gaussian, i.e., ε ∼ N (0, σ2

m). We firstly assume a uniform prior for
the parameters θ = [θ1, θ2]T , i.e.,

θ ∼ U(θl, θu) , with θl = [0, 0]T and θu = [1, 1]T .

Note that the method in (Long, 2013) is not applicable here since there is no
single mode in the posterior due to the non–informative prior. The Jacobian
of this model with respect to θ is

J = [3α(αθ1+βθ2)2ξ2+α exp(−|0.2−ξ|), 3β(αθ1+βθ2)2ξ2+β exp(−|0.2−ξ|)] .
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Consider the particular case of α = 1 and β = 1. We know that the linear

manifold is defined by V =
[√

2
2 ,−

√
2

2

]T
, and its orthogonal direction is

U =
[√

2
2 ,
√

2
2

]T
. According to our theory, the following transformation is

carried out:

s =

√
2

2
(θ1 − θ10) +

√
2

2
(θ2 − θ20) ,

t =

√
2

2
(θ1 − θ10)−

√
2

2
(θ2 − θ20) .

We can easily obtain ps(0) as

ps(0) =

{ √
2(θ10 + θ20) , 0 < θ10 + θ20 ≤ 1 ,√
2(2− θ10 − θ20) , 1 < θ10 + θ20 ≤ 2 .

In Figure 2, we compare the information gains computed using our projective
Laplace approximation with sparse grid (LA + SG) numerical integration,
Monte Carlo (LA + MC) sampling, or double–loop Monte Carlo (DLMC) in
the scenario when M = 10 and ξ = 0.3. The projective Laplace approxima-
tions have no bias and exhibit faster convergence compared to the DLMC.
The DLMC requires at least 102 times number of samples to reach the same
precision as the projective Laplace approximation. Note that the likelihood
evaluation, in this particular case, dominates the CPU time of the DLMC.
Therefore, the CPU time spent on the estimation is actually proportional to
the square of number of samples, when the number of samples in the outer
loop equals to the number of samples in the inner loop, in the DLMC of our
case. In this sense, our method is at least 104 times faster than the DLMC.
In Figure 3, we compare the absolute relative error of the expected informa-
tion gain for the sparse quadrature and Monte Carlo sampling when ξ = 0.3.
The value of the expected information gain, 3.87, computed using 107 num-
ber of samples in the Monte Carlo sampling is taken as the reference, in
order to compute the absolute relative error in Figure 3. Due to the lack of
smoothness of the integrand function, the convergence rate of LA + SG is
similar to LA + MC. A snapshot of the surface of marginal ps is visualized
in Figure 4. Note that there is a “kink” along the diagonal connecting (1, 0)
and (1, 0). This makes numerical integration difficult in principle.

5.1.1 Mixture Gaussian prior

To further evaluate the robustness of (18), we set the prior as a mixture
Gaussian which adopts the following form:

p(θ) = 0.5× p1(θ) + 0.5× p2(θ)(37)
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Figure 2: The convergence of the expected information gain computed using
the LA + MC or LA + SG, or using a DLMC in Example 5.1. A uniform
prior was used. The same set of samples was used for both the inner and
outer loops in the DLMC. The number of samples of DLMC is associated
to this set of samples.
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Figure 3: The absolute relative error of the LA + MC or LA + SG in
Example 5.1. The three curves of LA + MC represent three independent
runs of this method.

where p1(θ) and p2(θ) are the pdfs of two multivariate Gaussian with mean
vectors [2, 0]T and [0, 2]T , respectively, and covariance matrix[

1 0
0 1

]
.
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Figure 4: The tent function p(s) in Example 5.1.

The salient features of this prior are the two separated modes; see Figures
5(a) and 5(b) for the visualization. We compare the results obtained using
LA + SG and LA + MC, and DLMC. Figure 6(a) shows the performances of
the three methods in terms of the number of quadrature points (LA + SG)
or sample points (LA + MC and DLMC), when ξ = 0.3. Our approximation
integrated by either sparse grid or Monte Carlo is significantly faster than
the DLMC. Similarly, Figure 6(b) shows the convergeces of these methods
when ξ = 1. We used an auxiliary Gaussian pdf, with mean vector [2, 0]T

and covariance matrix [
1 0
0 1

]
,

in the sparse grid numerical integration.

5.1.2 Mixture Log Gaussian prior

We define a new set of parameters γ = log θ. We assume γ is the same
mixture of two Gaussian pdfs as in 5.1.1. The indistinguishable manifold
of γ is not a straight line anymore (see Figure 7 for the visualization of
two posterior pdfs.), and needs to be computed implicitly by the eigenvalue
decomposition of the Hessian matrix (4).
As seen in Figure 8, the convergence of DLMC is substantially slower than
our approaches in this case (at least 105 times slower in terms of number of
samples) due to the change of variable. Additionally, we split the integral
(18) against the mixture Gaussian into two integrals with two Gaussian pdfs
separately, so that an auxiliary measure is not needed. Same numbers of
quadrature points are used in both integrations. We note that the splitted
integration reaches a high precision when the total number of quadratures
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(a) Prior.

(b) Posterior. M=5.

Figure 5: The prior and posterior pdfs of mixture Gaussian with two sepa-
rated modes in Example 5.1.

is smaller than 10 (see Figure 9). The convergence of both approaches in
terms of the absolute consecutive difference are shown in Figure 10.

6 Conclusion

In this work, we have extended the Bayesian experimental design method-
ology based on the Laplace approximation from determined cases to un-
derdetermined cases. Instead of carrying out the Laplace approximation
at the single well–defined posterior mode, we conduct the Laplace approx-
imation in the orthogonal directions of the unidentifiable manifold for the
conditional posterior weight functions, under a local transformation of pa-
rameters. Eventually, the expected information gain can be approximated
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Figure 6: The convergence of the expected information gain computed using
the LA + MC or LA + SG, or using DLMC in Example 5.1. A mixture
Gaussian prior was used.

asymptotically as an integration over the prior parameter domain similar
to the cases where the model parameters are determined completely by the
experiment. One extra step is to project the Hessian onto the orthonormal
complement space of the kernel of the cost function Jacobian. Furthermore,
we approximate the marginal pdf of the parameter orthogonal to the indis-
tinguishable manifold, using a linearized manifold at the modes found by a
constrained optimization. By doing this, we have a dominant error O(1).
We also developed the techniques for the prediction of quantities of interest
based on the same strategy. The proposed formula is able to deal with a
model of unidentifiable manifold of parameters and multimodal or noninfor-
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(a) M=2

(b) M=12

Figure 7: The posterior pdfs of γ with two separated modes in Example 5.1.

mative (uniform) priors. In order to carry out the numerical integration, we
can use sparse quadrature techniques or Monte Carlo sampling depending
on the regularity of the integrand function. We have demonstrated the effi-
ciency and accuracy of our method using numerical examples that include
the design of the scalar experimental set–up in an one dimensional cubic
polynomial function with two indistinguishable parameters.
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Figure 8: The convergence of the expected information gain computed using
the LA + MC or LA + SG, or using DLMC. ξ = 1 in Example 5.1. A mixture
log Gaussian prior was used.
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Figure 9: The convergence of expected information gain computed by LA
+ SG in Example 5.1. ξ = 1. A mixture log Gaussian prior was used.

A Proof of the error estimate in Equation (13) .

The Laplace approximation error εlaplace in Equation (13) can be expressed
as follows:∫

T

∫
S

log

[
p̃(s, t)

p(s, t)

]
p̃(s|t, ȳ)dsdt+

∫
T

∫
S

log

[
p(s, t|ȳ)

p̃(s, t|ȳ)

]
p̃(s|t, ȳ)dsdt

+

∫
T

∫
S

log

[
p(s, t|ȳ)

p(s, t)

]
[p(s|t, ȳ)− p̃(s|t, ȳ)] dsdt = E1 + E2 + E3 .

To prove the error order for E1, we consider the inner integration of s for
a fixed value of t. We write the Taylor series of hp(s, t), defined in Section
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Figure 10: The absolute consecutive difference of expected information gain
computed by LA + SG in Example 5.1. ξ = 1. A mixture log Gaussian
prior was used.

2.4, at the vicinity of ŝ as follows

hp(s, t) =
∑
|α|≤4

Dαhp(ŝ, t)

α!
(s− ŝ)α+OP

(
‖s− ŝ‖5

)
,

where we use the multi–index notation α with the following properties:

|α| = α1 + · · ·+ αd , α! = α1! · · ·αd! , (s)α = sα1
1 · · · s

αd
d .

The odd central moments of the multivariate Gaussian are zero and the
parameter posterior covariance Σ is of OP

(
1
M

)
. It is straightforward to

see that the fourth and sixth moments of this multivariate Gaussian are
OP
(

1
M2

)
and OP

(
1
M3

)
, respectively. Consequently the conditional expec-

tation of hp(s, t) is∫
S
hp(s, t)p̃(s|t, ȳ)ds =hp(ŝ, t) +

Σs|t : ∇∇hp(ŝ, t)
2

+
1

4!

∑
i,j,k,l

(∂ijklhp)(Σs|t,ijΣs|t,kl + Σs|t,ikΣs|t,jl + Σs|t,ilΣs|t,jk) +OP

(
1

M3

)

=hp(ŝ, t) +
Σs|t : ∇∇hp(ŝ, t)

2
+OP

(
1

M2

)
=

∫
S

log(p̃(s, t))p̃(s|t, ȳ)ds+OP

(
1

M2

)
,

with i, j, k, l = 1,..., dim(s) and ∂ijklh = ∂4h(ŝ,t)
∂si∂sj∂sk∂sl

. Therefore, E1 =

Op(
1
M2 ).
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Next, regarding E2, we observe that

log

[
p(s, t|ȳ)

p̃(s, t|ȳ)

]
=

∑
|α|=3,4

Dαh(ŝ, t)

α!
(s− ŝ)α +OP

(
‖s− ŝ‖5

)
.

Similar to the analysis of the expectation of hp(s, t) above, the expectation
of this log ratio is∫
S

log

[
p(s, t|ȳ)

p̃(s, t|ȳ)

]
p̃(s|t, ȳ)ds =

1

4!

∑
i,j,k,l

(∂ijklhp)
(
Σs|t,ijΣs|t,kl + Σs|t,ikΣs|t,jl + Σs|t,ilΣs|t,jk

)
+OP

(
1

M3

)
= OP

(
1

M2

)
.

Finally, regarding to the third term E3, we have∫
T

∫
S

log

[
p(s, t|ȳ)

p(s, t)

]
(p(s|t, ȳ)− p̃(s|t, ȳ))dsdt

=

∫
T

∫
S

log

[
p(s, t|ȳ)

p(s, t)

] {
exp

[∑
|α|=3

Dαhp(ŝ)

α!
(s− ŝ)α +OP (||s− ŝ||4)

]
− 1

}
p̃(s|t, ȳ)dsdt .

After the first order expansion of the exponential term, we obtain∫
T

∫
S

log

[
p(s, t|ȳ)

p(s, t)

] {∑
|α|=3

Dαhp(ŝ)

α!
(s− ŝ)α +OP (||s− ŝ||4)

}
p̃(s|t, ȳ)dsdt .

Since log
[
p(s,t|ȳ)
p(s,t)

]
is OP (1) in s and the third moment of a multivariate

Gaussian is zero, the rate of this error is dominant by∫
T

∫
S
OP (||s− ŝ||4)p̃(s|tȳ)dsdt ,

which has already been shown to be inversely proportional to M2. Now, it
is straightforward to observe that the dominating term is OP

(
1
M2

)
. These

three error terms are similar to the error terms in Appendices A, B and C
in (Long, 2013), respectively.

B Proof of the error estimate of the conditional
maximum posterior estimator ŝ .

Let

R(s) =
1

2
M(g(θ0)−g(f(s, t))TΣ−1

ε (g(θ0)−g(f(s, t)))+Es
TΣ−1

ε (g(f(s, t))−g(θ0))−hp(s, t) .
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We then have that

∇R(s) = MJTs Σ−1
ε (g(f(s, t))− g(θ0)) + JTs Σ−1

ε Es −∇hp(s, t) ,

where Js is the Jacobian of g w.r.t. the parameters s, and Es is the sum-
mation of residual vectors defined in (Long, 2013). If we ignore the higher
order terms, the first order expansion of ∇R(s) at (0, t) reads

∇R(s) = ∇R(0) +∇∇R(0)s .

Therefore, using Newton’s method∇R(ŝ) = 0 implies that∇R(0)+∇∇R(0)ŝ =
0. Thus,

ŝ =0− (MJTs ΣT
ε Js +HT

s Σ−1
ε Es −∇∇hp(0, t))−1(JTs Σ−1

ε Es −∇hp(0, t))
=0− (MJTs ΣT

ε Js +HT
s Σ−1

ε Es −∇∇hp(0, t))−1(JTs Σ−1
ε Es)

+ (MJTs ΣT
ε Js +HT

s Σ−1
ε Es −∇∇hp(0, t))−1∇hp(0, t) ,

where Hs is the Hessian of the model g w.r.t. the parameter s .
AsM →∞, ŝ = 0−(MJTs ΣT

ε Js+H
T
s Σ−1

ε Es−∇∇hp(0, t))−1(JTs Σ−1
ε Es)+

OP
(

1
M

)
= OP

(
1√
M

)
.

C Proof of the error estimate in Equation (29)

We express the posterior distribution of the quantity of interest, Q, as

p(Q|ȳ) =

∫
T
p(Q|t, ȳ)p(t|ȳ)dt

=

∫
T
p̃(Q|t, ȳ)p(t|ȳ)dt+

∫
T

[p(Q|t, ȳ)− p̃(Q|t, ȳ)] p(t|ȳ)dt

=

∫
T
p̃(Q|t, ȳ)(

∫
S
p̃(s, t|ȳ)ds)dt+

∫
T
p̃(Q|t, ȳ)(

∫
S
p(s, t|ȳ)− p̃(s, t|ȳ)ds)dt

+

∫
T

[p(Q|t, ȳ)− p̃(Q|t, ȳ)] p(t|ȳ)dt

= p̃(Q|ȳ) +

∫
T

[p(Q|t, ȳ)− p̃(Q|t, ȳ)] p(t|ȳ)dt+OP

(
1

M2

)
,

(38)
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where the error rate is obtained in a way similar to the derivation of E3.
Furthermore, we have

p(Q|t, ȳ)

=

∫
S
p(Q|s, t, ȳ)p(s|t, ȳ)ds

=

∫
S
p(Q|s, t, ȳ)p̃(s|t, ȳ)ds+

∫
S
p(Q|s, t, ȳ) [p(s|t, ȳ)− p̃(s|t, ȳ)] ds

=

∫
S

exp

{
[Q− τ(ŝ, t)−∇τ(ŝ, t)(s− ŝ)]2 − [Q− τ(s, t)]2

2σ2
Q

}
p̃(Q|s, t, ȳ)p̃(s|t, ȳ)ds

+

∫
S
p(Q|s, t, ȳ) [p(s|t, ȳ)− p̃(s|t, ȳ)] ds

=

∫
S

exp
{

[(s− ŝ)T∇∇τ(ŝ, t)(s− ŝ) +OP (||s− ŝ||3)]OP (||s− ŝ||)
}
p̃(Q|s, t, ȳ)p̃(s|t, ȳ)ds

+

∫
S
p(Q|s, t) [p(s|t, ȳ)− p̃(s|t, ȳ)] ds

=

∫
S

{
[(s− ŝ)T∇∇τ(ŝ, t)(s− ŝ) +OP (||s− ŝ||3)]OP (||s− ŝ||) + 1

}
p̃(Q|s, t)p̃(s|t, ȳ)ds

+

∫
S
p(Q|s, t) [p(s|t, ȳ)− p̃(s|t, ȳ)] ds

=

∫
S
p̃(Q|s, t)p̃(s|t, ȳ)ds+

∫
S
p(Q|s, t) [p(s|t, ȳ)− p̃(s|t, ȳ)] ds+OP

(
1

M2

)
.

By reusing the expansion of p(s|t, ȳ)− p̃(s|t, ȳ) derived in E3, we obtain

p(Q|t, ȳ)− p̃(Q|t, ȳ) =

∫
S
p(Q|s, t) [p(s|t, ȳ)− p̃(s|t, ȳ)] ds+OP

(
1

M2

)
= OP

(
1

M2

)
.

Therefore,

p(Q|ȳ) = p̃(Q|ȳ) +OP

(
1

M2

)
.(39)

In this connection, the first error term in (29), i.e., the error term before
marginalizing over data, can be obtained as∫
Q

log

[
p(Q|ȳ)

p̃(Q|ȳ)

]
p̃(Q|ȳ)dQ+

∫
Q
p(Q|ȳ) (p(Q|ȳ)− p̂(Q|ȳ)) dQ

=

∫
Q

log

[
p(Q|ȳ)− p̃(Q|ȳ)

p̃(Q|ȳ)
+ 1

]
p̃(Q|ȳ)dQ+OP

(
1

M2

)
=

∫
Q

[
p(Q|ȳ)− p̃(Q|ȳ)

p̃(Q|ȳ)
+OP

(
p(Q|ȳ)− p̃(Q|ȳ)

p̃(Q|ȳ)

)2
]
p̃(Q|ȳ)dQ+OP

(
1

M2

)
= OP

(
1

M2

)
.
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